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Introduction
ARPLO is a healthcare solution that centers around 
smart-phone compatible markerless motion capture 
(MMC) [1] technology which allows a telemedicine 
pipeline among patients and medical professionals. 
ARPLO provides joint angles, leading to accurate 
description of motion geometry and informing relevant 
medical attributes.  

This white paper presents an in-depth literature survey 
to validate ARPLO's MMC engine, which is built upon 
the Google MediaPipe software suite. Results of this 
rigorous literature survey validate ARPLO's MMC 
engine, Google MediaPipe, by featuring low mean joint 
positional error. This paper focuses on validation of 
measuring human joint kinematics only.  

We first extend key motivations of MMC technologies, 
give examples from literature, and provide validation 
data proving that Google MediaPipe reaches high 
standards for kinematic human motion capture.
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ARPLO’s MMC engine captures limb motion parameters from video recordings. This data can be utilized to evaluate clinically relevant wellness scores such 
as NIH Stroke – Drift Score 5 [2] or to extrapolate kinetic features of the limbs (torques, speeds, accelerations) to infer joint or muscle strength. Over 

traditional marker-based systems, the main advantages of smart phone compatible MMCs are ease of use, naturalistic data collection, cost effectiveness 
and accessibility (Figure 1). Marker based system costs can reach up to $100,000 with days of analysis required (Figure 2) while MMCs only require a 

personal smartphone and provide data in minutes [3, 19].

Key Motivations

Ease of Use Naturalistic 
Data Collection 

MMC eliminates time 
consumption of 

meticulous placement of 
markers and patient 

discomfort. It's beneficial 
in clinical analysis since 
patient compliance is 

crucial.

Cost Effectiveness  
and Accessibility

Marker-based solutions 
confine subjects to artificial 

laboratory settings. 
MMC allows naturalistic 

environments, invaluable for 
rehabilitation, sports 

performance, and daily life or 
habit analysis.

Smart phone based MMC 
eliminates initial setup and 

long-term maintenance 
and operational expenses.

3

Figure 1 –  Summary on advantages of MMCs, simple and cost-effective limb motion analysis and allow patients to be examined in their natural environments [3]. On the other hand, gold standard 
marker-based motion capture systems require large numbers of cameras, markers attached on the patient, and operation by experts, which is time consuming and expensive. MMC systems can utilize a 

video recording obtained with a single camera, without any marker, or a specialized environment.

Naturalistic Data Collection, Cost Effectiveness and Accessibility
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Figure 2 

(i) Steps of marker-based motion capture 
system which requires (a) high-cost camera 
system and studio, their calibration, and 
hours of data collection followed by (b) 
expert analysis for labeling markers and 
kinematic analysis to (c) report 
physiologically relevant information to the 
physicians. (ii) Steps of smartphone based 
markerless motion capture systems which 
(a) begins with a video recording of the 
relevant motion through a smartphone 
without any requirement of specialized 
studio. Then the software performs (b) the 
kinematic analysis and transferring the (c) 
physiologically relevant data to the 
physician. Markerless systems with 
smartphones significantly decrease the 
costs associated with the equipment (no 
external cameras or a studio) and the 
laborship (experts) and time required for the 
analysis from days to times [3, 19]. Figure 
made by BioRender.
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What to Validate, 
and Why?

MMC systems promise accurate description of joint 
kinematic variables, which are joint angles, joint positions 
and limb parameters. Furthermore, physicians often 
require dynamic variables, such as joint/limb velocities, 
accelerations, and torques. These variables require 
differentiated joint kinematic variables. However, 
differentiation amplifies errors in a measurement. 
Therefore, it is essential to validate the joint kinematics or 
joint angle measurements of the ARPLO MMC system.
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Qualitative Literature Survey to Validate ARPLO’s Joint Angle 
Measurement Engine (Google MediaPipe-BlazePose)
The accuracy and reliability of markerless joint kinematics measurement 
systems are paramount for their acceptance and widespread use in clinical 
and research settings. This section delves into the various techniques 
employed to validate these systems, ensuring their effectiveness and 
reliability in accurately capturing human motion. The gold standard 
validation method for MMC systems is comparing their joint angle 
measurements to the ones measured by marker-based motion capture 
systems [4] or goniometer for quasistatic measurements [20]. This 
literature review focuses on validation of Arplo’s MMC Engine Google 
MediaPipe with gold standard marker-based systems and comparison 
against more expensive markerless systems and marker-based systems. 

In a recent study [4], an MMC open-source tool Google MediaPipe, allowing 
MMC only via RGB images, was compared and validated against 
commercial systems also using the depth information (RGB-D) Kinect v2, 
Astra, and Intel Real Sense. RGB-D technologies are relatively cheaper 
compared to the marker-based systems.  This makes it less cost effective 
and more difficult to integrate with smartphones.  Validation of Google 
MediaPipe only with RGB recordings of the motion is essential to integrate 
such MMC technologies to smartphones. Also, all systems were validated 
with a groundtruth measurement through a marker-based system, Qualisys 
[4]. The data flow of the comparison is summarized in Figure 3 and adapted 
from reference [4]. Shoulder, elbow, hip, and knee motions were 

simultaneously captured through RGB video recording, three depth sensors 
from Kinect v2, Astra, Real Sense, and marker-based system Qualisys. RGB 
recordings were processed with MediaPipe. They concluded that 
MediaPipe, using only the RGB recordings, resulted in less joint angle error 
and overperformed commercial RGB-Ds.  This showed how simple RGB 
based MMC can be useful, such as simple cellphone camera usage. Figure 
2 shows the pipeline of validation study. Volunteers with markers perform 
certain movements, while the systems were collecting data simultaneously 
for each test. Another study compared  BlazePose MMC, a part of Google 
MediaPipe, via RGB recordings, to a commercial marker-based  motion 
capture system Vicon [18]. Ten subjects were recorded via GoPro RGB 
camera and Vicion motion capture system using markers simultaneously. 
BlazePose validated with root mean square error compared to Viconn for 
knee, hip, and ankle joint angle measurements, with a maximum error of 
~14°. Detailed results will be discussed in the last section. In summary, 
Google MediaPipe-BlazePose is a validated, strong MMC engine, viable for 
smartphone usage.
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Figure 3 

Pipeline for performance evaluation of 
RGB-D (Kinect v2, Astra, Realsense), RGB 
(processed via MediaPipe) with marker- 
based motion capture system Qualisys. 
Figure was prepared in BioRender and 
adapted from [4].
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Constituents of Google MediaPipe (GMP): 
BlazePose and Generative Human Modeling 
Pipeline (GHUM)

GMP provides flexible development environment for MMC 
in Android, Python, Web, or iOS platforms. GMP lets us 
detect certain landmarks of human bodies in a video, 
which is handled as series of images. It identifies key 
body locations that can later be used for extraction of 
kinematic parameters, such as joint angles and eventually 
transformed into meaningful medical parameters. A 
smartphone MMC app should be fast, accurate, real-time 
and on-device output generations. Therefore, GMP used 
BlazePose infrastructure developed by Bazarevsky et. al. 
[8], which is based on 33-points body key points 
topology. While this level of detail provides enough 
information for our purposes, it keeps computational 
requirements low, allowing a seamless user experience. 
BlazePose first runs a detector for the first frame of the 
video and locates region of interest (ROI) for 33 pose key 
points by using a machine-learning based pipeline. For 
the following frames, BlazePose just tracks the detected 
ROIs, which makes the pipeline computationally 
lightweight and useful for mobile and real-time 
applications. Figure 4 – Human topology of BlazePose – part of GMP (left) performs accurate joint tracking (right). Figure is 

taken from Google Research, post on pose detection via Google MediaPipe-Blaze Pose [21]
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BlazePose is later extended by Xu et. al. via new toolbox named as 
Generative Human Modeling Pipeline (GHUM) [9], a deep learning 
framework trained with 60,000 diverse human configurations. 
Overall, GMP Pose Estimation toolbox is made based on BlazePose 
and GHUM and designed to be computationally lightweight and 
feature real-time on- device interface [10].

Dynamic variable estimation is summarized in a study by Stanford 
university, visualized in Figure 6 [11]. A motion estimation engine 
provides kinematic variables, which are then processed by a 
physics-based optimization engine that will calculate the dynamic 
variables such as joint/limb velocities, accelerations, and forces 
acting on the body. Eventually, these are processed into clinically 
relevant scores. Based on all the discussion, general workflow of 
Arplo is presented in Figure 7 as (1) measurement of joint angles via 
MMC engine, (2) extraction of kinematic and dynamic parameters, 
(3) generating reports for physical consultation and calculating 
clinical wellness scores.
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Figure 7 – ARPLO workflow, joint angle measurement via MMC, extraction of kinematic and 
dynamic features, preparing reports for physicians. 



Quantitative Validation of 
ARPLO Joint Angle 

Measurement Engine GMP
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In this section, the performance of GMP, which is built on BlazePose-GHUM architecture, was compared with 
other validated SOTA motion capture software [10]: SPIN [12] , HUND [13], and THUNDR [14]. SPIN, HUND, 
and THUNDR are validated with large datasets of human poses: Human3.6M [15] and 3DPW [16] with millions 
of human motion frames, represent a strong validation data set as the original data were collected via marker 
based systems and inertial measurement units (IMUs) respectively.  

A renowned motion capture error metric was used for validation: mean per joint positional error (MPJPE) [17]. It 
is defined as the mean distance between the predicted 3D joint locations and the corresponding ground truth 
joint locations (mm). As a result, all the architectures showed low MPJPE around 120-150 mm considering the 
length scales of human body, with GMP showed slightly better performance with 121 mm MPJPE as shown in 
Table 1 [10].

1. Comparing GMP 
With Open-Source 
State of the Art 
(SOTA) Validated 
MMC

Method MPJPE 

SPIN 139.5 

HUND 156.0 

THUNDR (Marker) 138.0 

BlazePose- GHUM (GMP) 121.0 

12

Table 1 – mean per joint positional error (MPJPE) of SOTA based on challenging data set. Units are in mm.
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Joint angle estimation performance of GMP was compared to commercial MMCs, which also use depth information: 
Kinect, Astra, and RealSense. The groundtruth data was provided by a commercial marker-based motion capture 
system Qualisys [4]. Motion was recorded as RGB frames and fed to GMP pipeline. Results of quantitative comparison 
are presented in Table 2 with the metric, mean absolute joint angle errors. MediaPipe overperformed commercial 
solutions even though depth data was not being utilized.

2. Validating GMP 
With Commercial 
MMC Systems and 
Golden Standard 
Marker Based 
Technologies

Sensor/Data All Data Upper Limbs Lower Limbs

Astra 11.60 $ 3.71 12.36 $ 4.27 10.84 $ 3.27
Intel 11.56 $ 4.38 11.56 $ 3.74 11.57 $ 5.32

Kinect 12.65 $ 5.99 16.01 ÷ 6.72 9.30 ÷ 2.62

MediaPipe 8.57 $ 3.06 9.98 ⼟ 3.79 7.16 ÷ 1.21

System System Type Performance Comparison Parameter

GMP (Arplo) Open-Source SOTA 100.0 -

THUNDR Open-Source SOTA 85.95 MPJPE

SPIN Open-Source SOTA 71.07 MPJPE

HUND Open-Source SOTA 71.07 MPJPE

INTEL Commercial Product 65.11 Mean Absolute Error

ASTRA Commercial Product 52.50 Mean Absolute Error

KINECT Commercial Product 52.39 Mean Absolute Error

13

Two independent studies comparing GMP to commercial, validated marker-based and MMC systems based on mean 
absolute joint angle error, and to SOTA open source MMC systems based on MPJPE were summarized together in 
Table 3. To set a common baseline, we calculated relative performance index which represents what percentage GMP 
is better with respect to related comparison parameter. GMP, used by Arplo, was taken as 100 over 100 performance. 
Relative success is calculated based on the comparison of corresponding metrics that GMP and commercial systems 
achieved in each study. Results are plotted in Figure 8. All the other tools overperformed by GMP in their 
corresponding metric and according to the reported data in the literature.

Table 2 – Mean absolute joint angle errors and their deviation, evaluated for commercial MMC and MediaPipe. Ground truth is marker based Qualisys motion capture system [4]. 

Table 3 – Summary of performance index calculation. It was comparison of common comparison parameters as a percentage.
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Figure 8 

Performance Index of GMP compared to 
other MMC. GMP was taken as baseline, 
and others were compared with respect to 
the baseline. Lower values represent 
lower percentage. GMP was compared to 
THUNDR, SPIN, and HUND based on 
MPJPE. GMP was compared to INTEL, 
ASTRA, and KINECT based on absolute 
angle error.
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Here we summarize the comparison of GMP with Qualisys [4] and another marker-based motion 
capture system Vicon [18]. Comparison with Vicon in terms of lower limbs: knee, hip, and ankle are 
summarized in Figure 9. Whereas Qualisys resulted in ~7° mean absolute joint angle error for lower 
limbs [4] compatible with validation by Vicon which gives mean absolute joint angle error as ~6.7°. 

While literature reinforces validity of Arplo’s engine GMP, we aim to validate finalized POC with gold 
standard goniometer and marker-based motion capture systems.

3. Validating GMP 
With Gold 
Standard Marker 
Based Motion 
Capture Systems

15

Figure 9 – Comparison 
of GMP to marker-based 
motion capture system 
Vicon. 
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